Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 600(7889): 543-546, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853469

RESUMO

Translation of the genetic code into proteins is realized through repetitions of synchronous translocation of messenger RNA (mRNA) and transfer RNAs (tRNA) through the ribosome. In eukaryotes translocation is ensured by elongation factor 2 (eEF2), which catalyses the process and actively contributes to its accuracy1. Although numerous studies point to critical roles for both the conserved eukaryotic posttranslational modification diphthamide in eEF2 and tRNA modifications in supporting the accuracy of translocation, detailed molecular mechanisms describing their specific functions are poorly understood. Here we report a high-resolution X-ray structure of the eukaryotic 80S ribosome in a translocation-intermediate state containing mRNA, naturally modified eEF2 and tRNAs. The crystal structure reveals a network of stabilization of codon-anticodon interactions involving diphthamide1 and the hypermodified nucleoside wybutosine at position 37 of phenylalanine tRNA, which is also known to enhance translation accuracy2. The model demonstrates how the decoding centre releases a codon-anticodon duplex, allowing its movement on the ribosome, and emphasizes the function of eEF2 as a 'pawl' defining the directionality of translocation3. This model suggests how eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs undergo large-scale molecular reorganizations to ensure maintenance of the mRNA reading frame during the complex process of translocation.


Assuntos
Anticódon , Eucariotos , Anticódon/genética , Anticódon/metabolismo , Códon/genética , Eucariotos/genética , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo
2.
Nat Commun ; 10(1): 2519, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175275

RESUMO

The ribosome, the largest RNA-containing macromolecular machinery in cells, requires metal ions not only to maintain its three-dimensional fold but also to perform protein synthesis. Despite the vast biochemical data regarding the importance of metal ions for efficient protein synthesis and the increasing number of ribosome structures solved by X-ray crystallography or cryo-electron microscopy, the assignment of metal ions within the ribosome remains elusive due to methodological limitations. Here we present extensive experimental data on the potassium composition and environment in two structures of functional ribosome complexes obtained by measurement of the potassium anomalous signal at the K-edge, derived from long-wavelength X-ray diffraction data. We elucidate the role of potassium ions in protein synthesis at the three-dimensional level, most notably, in the environment of the ribosome functional decoding and peptidyl transferase centers. Our data expand the fundamental knowledge of the mechanism of ribosome function and structural integrity.


Assuntos
Potássio/metabolismo , Ribossomos/ultraestrutura , Difração de Raios X , Cátions , Microscopia Crioeletrônica , Cristalização , Cristalografia por Raios X , Escherichia coli , Biossíntese de Proteínas , Conformação Proteica , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo
3.
Nucleic Acids Res ; 46(14): 7425-7435, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29931292

RESUMO

We report new crystallographic structures of Thermus thermophilus ribosomes complexed with long mRNAs and native Escherichia coli tRNAs. They complete the full set of combinations of Watson-Crick G•C and miscoding G•U pairs at the first two positions of the codon-anticodon duplex in ribosome functional complexes. Within the tight decoding center, miscoding G•U pairs occur, in all combinations, with a non-wobble geometry structurally indistinguishable from classical coding Watson-Crick pairs at the same first two positions. The contacts with the ribosomal grip surrounding the decoding center are all quasi-identical, except in the crowded environment of the amino group of a guanosine at the second position; in which case a G in the codons may be preferred. In vivo experimental data show that the translational errors due to miscoding by G•U pairs at the first two positions are the most frequently encountered ones, especially at the second position and with a G on the codon. Such preferred miscodings involve a switch from an A-U to a G•U pair in the tRNA/mRNA complex and very rarely from a G = C to a G•U pair. It is concluded that the frequencies of such occurrences are only weakly affected by the codon/anticodon structures but depend mainly on the stability and lifetime of the complex, the modifications present in the anticodon loop, especially those at positions 34 and 37, in addition to the relative concentration of cognate/near-cognate tRNA species present in the cellular tRNA pool.


Assuntos
Pareamento de Bases , Escherichia coli/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Ribossomos/genética , Thermus thermophilus/genética , Anticódon/genética , Códon/genética , Cristalografia por Raios X , Escherichia coli/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo
4.
Trends Biochem Sci ; 41(9): 798-814, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27372401

RESUMO

The fidelity of translation depends strongly on the selection of the correct aminoacyl-tRNA that is complementary to the mRNA codon present in the ribosomal decoding center. The ribosome occasionally makes mistakes by selecting the wrong substrate from the pool of aminoacyl-tRNAs. Here, we summarize recent structural advances that may help to clarify the origin of missense errors that occur during decoding. These developments suggest that discrimination between tRNAs is based primarily on steric complementarity and shape acceptance rather than on the number of hydrogen bonds between the molding of the decoding center and the codon-anticodon duplex. They strengthen the hypothesis that spatial mimicry, due either to base tautomerism or ionization, drives infidelity in ribosomal translation.


Assuntos
Código Genético/genética , Mutação de Sentido Incorreto , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência Aminoácido-Específico/metabolismo , Anticódon/genética , Códon/genética , Ligação de Hidrogênio , Mutação de Sentido Incorreto/genética , Biossíntese de Proteínas/genética , RNA de Transferência Aminoácido-Específico/genética , Ribossomos/química , Ribossomos/metabolismo
5.
Nucleic Acids Res ; 44(13): 6434-41, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27174928

RESUMO

Precise conversion of genetic information into proteins is essential to cellular health. However, a margin of error exists and is at its highest on the stage of translation of mRNA by the ribosome. Here we present three crystal structures of 70S ribosome complexes with messenger RNA and transfer RNAs and show that when a G•U base pair is at the first position of the codon-anticodon helix a conventional wobble pair cannot form because of inescapable steric clash between the guanosine of the A codon and the key nucleotide of decoding center adenosine 1493 of 16S rRNA. In our structure the rigid ribosomal decoding center, which is identically shaped for cognate or near-cognate tRNAs, forces this pair to adopt a geometry close to that of a canonical G•C pair. We further strengthen our hypothesis that spatial mimicry due either to base tautomerism or ionization dominates the translation infidelity mechanism.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/química , RNA Ribossômico 16S/genética , Ribossomos/química , Anticódon/química , Anticódon/genética , Códon/química , Códon/genética , Cristalografia por Raios X , Guanosina/química , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Ribossômico 16S/química , RNA de Transferência/química , Ribossomos/genética , Thermus thermophilus/química , Thermus thermophilus/genética
6.
Nat Commun ; 7: 10457, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26791911

RESUMO

Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm(5)s(2)U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.


Assuntos
Códon/genética , Escherichia coli/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Pareamento de Bases , Sequência de Bases , Códon/química , Códon/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Código Genético , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Tiouridina/análogos & derivados , Tiouridina/metabolismo
7.
Nat Commun ; 6: 7251, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26037619

RESUMO

The decoding of mRNA on the ribosome is the least accurate process during genetic information transfer. Here we propose a unified decoding mechanism based on 11 high-resolution X-ray structures of the 70S ribosome that explains the occurrence of missense errors during translation. We determined ribosome structures in rare states where incorrect tRNAs were incorporated into the peptidyl-tRNA-binding site. These structures show that in the codon-anticodon duplex, a G·U mismatch adopts the Watson-Crick geometry, indicating a shift in the tautomeric equilibrium or ionization of the nucleobase. Additional structures with mismatches in the 70S decoding centre show that the binding of any tRNA induces identical rearrangements in the centre, which favours either isosteric or close to the Watson-Crick geometry codon-anticodon pairs. Overall, the results suggest that a mismatch escapes discrimination by preserving the shape of a Watson-Crick pair and indicate that geometric selection via tautomerism or ionization dominates the translational infidelity mechanism.


Assuntos
Pareamento Incorreto de Bases , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/química , Ribossomos/química , Anticódon/química , Pareamento de Bases , Códon/química , Cristalografia por Raios X , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Thermus thermophilus
8.
EMBO J ; 27(21): 2929-40, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18843295

RESUMO

Precursor-messenger RNA (pre-mRNA) splicing encompasses two sequential transesterification reactions in distinct active sites of the spliceosome that are transiently established by the interplay of small nuclear (sn) RNAs and spliceosomal proteins. Protein Prp8 is an active site component but the molecular mechanisms, by which it might facilitate splicing catalysis, are unknown. We have determined crystal structures of corresponding portions of yeast and human Prp8 that interact with functional regions of the pre-mRNA, revealing a phylogenetically conserved RNase H fold, augmented by Prp8-specific elements. Comparisons to RNase H-substrate complexes suggested how an RNA encompassing a 5'-splice site (SS) could bind relative to Prp8 residues, which on mutation, suppress splice defects in pre-mRNAs and snRNAs. A truncated RNase H-like active centre lies next to a known contact region of the 5'SS and directed mutagenesis confirmed that this centre is a functional hotspot. These data suggest that Prp8 employs an RNase H domain to help assemble and stabilize the spliceosomal catalytic core, coordinate the activities of other splicing factors and possibly participate in chemical catalysis of splicing.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ribonuclease H/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Sequência Conservada , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pirimidinas , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Proteínas de Ligação a RNA , Ribonucleoproteína Nuclear Pequena U4-U6 , Ribonucleoproteína Nuclear Pequena U5 , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade
9.
J Biol Chem ; 280(18): 18368-74, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15713678

RESUMO

tmRNA (transfer messenger RNA) is a unique molecule used by all bacteria to rescue stalled ribosomes and to mark unfinished peptides with a specific degradation signal. tmRNA is recruited by arrested ribosomes in which it facilitates the translational switch from cellular mRNA to the mRNA part of tmRNA. Small protein B (SmpB) is a key partner for the trans-translation activity of tmRNA both in vivo and in vitro. It was shown that SmpB acts at the initiation step of the trans-translation process by facilitating tmRNA aminoacylation and binding to the ribosome. Little is known about the subsequent steps of trans-translation. Here we demonstrated the first example of an investigation of tmRNA.ribosome complexes at different stages of trans-translation. Our results show that the structural element at the position of tmRNA pseudoknot 3 remains intact during the translation of the mRNA module of tmRNA and that it is localized on the surface of the ribosome. At least one SmpB molecule remains bound to a ribosome.tmRNA complex isolated from the cell when translation is blocked at different positions within the mRNA part of tmRNA.


Assuntos
RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Transferência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...